C Program to Find Inverse of a Matrix
In this blog, we will write a C program to find inverse of a matrix.
Let's write the program
Program
#include<stdio.h>
#include<math.h>
//function prototype that are being created
void cofactor(float [][25], float);
float determinant(float [][25], float);
void transpose(float [][25], float [][25], float);
int main()
{
float a[25][25], n, d;
int i, j;
printf("Enter the order of the Matrix: ");
scanf("%f", &n);
printf("Enter the elements of a matrix: \n");
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
scanf("%f", &a[i][j]);
}
}
d = determinant(a, n);
if (d == 0)
printf("Since the determinant is zero (0), therefore inverse is not possible.");
else
cofactor(a, n);
}
// function for the calculation of determinant
float determinant(float a[25][25], float k)
{
float s = 1, det = 0, b[25][25];
int i, j, m, n, c;
if (k == 1)
{
return (a[0][0]);
}
else
{
det = 0;
for (c = 0; c < k; c++)
{
m = 0;
n = 0;
for (i = 0;i < k; i++)
{
for (j = 0 ;j < k; j++)
{
b[i][j] = 0;
if (i != 0 && j != c)
{
b[m][n] = a[i][j];
if (n < (k - 2))
n++;
else
{
n = 0;
m++;
}
}
}
}
det = det + s * (a[0][c] * determinant(b, k - 1));
s = -1 * s;
}
}
return (det);
}
// function for cofactor calculation
void cofactor(float num[25][25], float f)
{
float b[25][25], fac[25][25];
int p, q, m, n, i, j;
for (q = 0;q < f; q++)
{
for (p = 0;p < f; p++)
{
m = 0;
n = 0;
for (i = 0; i < f; i++)
{
for (j = 0; j < f; j++)
{
if (i != q && j != p)
{
b[m][n] = num[i][j];
if (n < (f - 2))
n++;
else
{
n = 0;
m++;
}
}
}
}
fac[q][p] = pow(-1, q + p) * determinant(b, f - 1);
}
}
transpose(num, fac, f);
}
//function to find the transpose of a matrix
void transpose(float num[25][25], float fac[25][25], float r)
{
int i, j;
float b[25][25], inverse[25][25], d;
for (i = 0; i < r; i++)
{
for (j = 0; j < r; j++)
{
b[i][j] = fac[j][i];
}
}
d = determinant(num, r);
for (i = 0;i < r; i++)
{
for (j = 0;j < r; j++)
{
inverse[i][j] = b[i][j] / d;
}
}
printf("\nThe inverse of matrix: \n");
for (i = 0; i < r; i++)
{
for (j = 0; j < r; j++)
{
printf("\t%f", inverse[i][j]);
}
printf("\n");
}
}
Output 1
Enter the order of the Matrix: 3
Enter the elements of a matrix:
4 6 2
1 2 3
4 5 6
The inverse of matrix:
-0.166667 -1.444444 0.777778
0.333333 0.888889 -0.555556
-0.166667 0.222222 0.111111
Output 2
Enter the order of the Matrix: 3
Enter the elements of a matrix:
1 2 3
4 5 6
3 2 1
Since the determinant is zero (0), therefore inverse is not possible.
Join Our Social Media Connections
0 Comments